Extensions 1→N→G→Q→1 with N=C339(C2×C4) and Q=C2

Direct product G=N×Q with N=C339(C2×C4) and Q=C2
dρLabelID
C2×C339(C2×C4)48C2xC3^3:9(C2xC4)432,692

Semidirect products G=N:Q with N=C339(C2×C4) and Q=C2
extensionφ:Q→Out NdρLabelID
C339(C2×C4)⋊1C2 = D64S32φ: C2/C1C2 ⊆ Out C339(C2×C4)248+C3^3:9(C2xC4):1C2432,599
C339(C2×C4)⋊2C2 = D6.4S32φ: C2/C1C2 ⊆ Out C339(C2×C4)488-C3^3:9(C2xC4):2C2432,608
C339(C2×C4)⋊3C2 = D6.3S32φ: C2/C1C2 ⊆ Out C339(C2×C4)248+C3^3:9(C2xC4):3C2432,609
C339(C2×C4)⋊4C2 = C12⋊S312S3φ: C2/C1C2 ⊆ Out C339(C2×C4)484C3^3:9(C2xC4):4C2432,688
C339(C2×C4)⋊5C2 = C62.96D6φ: C2/C1C2 ⊆ Out C339(C2×C4)244C3^3:9(C2xC4):5C2432,693
C339(C2×C4)⋊6C2 = C6224D6φ: C2/C1C2 ⊆ Out C339(C2×C4)244C3^3:9(C2xC4):6C2432,696
C339(C2×C4)⋊7C2 = S32⋊Dic3φ: C2/C1C2 ⊆ Out C339(C2×C4)244C3^3:9(C2xC4):7C2432,580
C339(C2×C4)⋊8C2 = (C3×C6).8D12φ: C2/C1C2 ⊆ Out C339(C2×C4)248+C3^3:9(C2xC4):8C2432,586
C339(C2×C4)⋊9C2 = S32×Dic3φ: C2/C1C2 ⊆ Out C339(C2×C4)488-C3^3:9(C2xC4):9C2432,594
C339(C2×C4)⋊10C2 = S3×C6.D6φ: C2/C1C2 ⊆ Out C339(C2×C4)248+C3^3:9(C2xC4):10C2432,595
C339(C2×C4)⋊11C2 = C4×C324D6φ: trivial image484C3^3:9(C2xC4):11C2432,690

Non-split extensions G=N.Q with N=C339(C2×C4) and Q=C2
extensionφ:Q→Out NdρLabelID
C339(C2×C4).1C2 = C335(C2×Q8)φ: C2/C1C2 ⊆ Out C339(C2×C4)488-C3^3:9(C2xC4).1C2432,604
C339(C2×C4).2C2 = C3⋊S34Dic6φ: C2/C1C2 ⊆ Out C339(C2×C4)484C3^3:9(C2xC4).2C2432,687
C339(C2×C4).3C2 = C33⋊C4⋊C4φ: C2/C1C2 ⊆ Out C339(C2×C4)484C3^3:9(C2xC4).3C2432,581
C339(C2×C4).4C2 = (C3×C6).9D12φ: C2/C1C2 ⊆ Out C339(C2×C4)488-C3^3:9(C2xC4).4C2432,587

׿
×
𝔽